Effects of spatial coherence in diffraction phase microscopy.
نویسندگان
چکیده
Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.
منابع مشابه
White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting.
A common problem when profiling surfaces with steps or discontinuities using white-light (coherence-probe) interferometry is localized spikes (batwings) or spurious peaks due to diffraction effects. We show that errors due to these effects can be minimized by processing the irradiance data obtained with an achromatic phase-shifter operating on the geometric (Pancharatnam) phase to yield the val...
متن کاملPartially coherent illumination in full-field interferometric synthetic aperture microscopy.
A model is developed for optical coherence tomography and interferometric synthetic aperture microscopy (ISAM) systems employing full-field frequency-scanned illumination with partial spatial coherence. This model is used to derive efficient ISAM inverse scattering algorithms that give diffraction-limited resolution in regions typically regarded as out of focus. Partial spatial coherence of the...
متن کاملQuantitative phase imaging with partially coherent illumination.
In this Letter, we formulate a mathematical model for predicting experimental outcomes in quantitative phase imaging (QPI) when the illumination field is partially spatially coherent. We derive formulae that apply to QPI and discuss expected results for two classes of QPI experiments: common path and traditional interferometry, under varying degrees of spatial coherence. In particular, our resu...
متن کاملEpi-illumination diffraction phase microscopy with white light.
We demonstrate the first reflection-based epi-illumination diffraction phase microscope with white light (epi-wDPM). The epi-wDPM system combines the off-axis, common-path, and white light approaches, in a reflection geometry enabling sub-nanometer spatial and temporal noise levels, while providing single-shot acquisition for opaque samples. We verified the epi-wDPM results by measuring control...
متن کاملInstantaneous Spatial Light Interference Microscopy.
We present Instantaneous Spatial Light Interference Microscopy (iSLIM) as a new quantitative phase method that combines the benefits of white light illumination in Zernike's phase contrast microscopy and phase stability associated diffraction phase microscopy. iSLIM is implemented as an add-on module to a commercial phase contrast microscope, and enables new features to quantitative phase imagi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2014